In Brief
- Every year, more than 795,000 people in the United States have a stroke.
- A team of scientists has discovered a common mechanism chain leading to brain cell death which involves proteins eating away at a cell's DNA.
A series of unfortunate events
A team of scientists has discovered that, despite having varied
causes and symptoms, most brain diseases all share a common mechanism
chain leading to brain cell death. The process, aptly named parthanatos after an enzyme called PARP and the Greek god of death, involves proteins eating away at the cell’s DNA.
Using lab-grown cells, the study completed the parthanatos chain.
Previous studies revealed how a protein called mitochondrial
apoptosis-inducing factor (AIF) is involved in the carving up of the
genome housed in the cell’s nucleus. When it leaves is usual place in
the mitochondria, the researchers believed that AIF itself doesn’t cut
DNA.
Yingfei Wang, then-postdoctoral fellow and now assistant professor at
the University of Texas Southwestern Medical Center, tested 160 human
proteins and identified one called macrophage migration inhibitory
factor (MIF) to work hand-in-hand with AIF.
“We found that AIF binds to MIF and carries it into the nucleus,
where MIF chops up DNA. We think that’s the final execution step in
parthanatos,” says director of the Institute for Cell Engineering at the
Johns Hopkins University School of Medicine Ted Dawson, whose earlier
work together with Valina Dawson, served as the foundation of the study.
Better treatment and a potential cure
“I can’t overemphasize what an important form of cell death it is; it
plays a role in almost all forms of cellular injury,” Dawson says.
However, he warns that MIF’s DNA-chopping abilities have only been
linked definitively to stroke. Still, he is confident it’s the right
direction to take. “We’re interested in finding out whether MIF is also
involved in Parkinson’s, Alzheimer’s and other neurodegenerative
diseases,” he says.
Understanding the parthanatos completely opens the development of
MIF-inhibiting drugs aimed at preventing, weakening, or stopping the
process. The researchers are continually working on developing chemical
compounds that can block MIF in lab-grown cells.
A report on the study can be found in Science.
No comments:
Post a Comment